↳ Prolog
↳ PrologToPiTRSProof
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
REACH_IN(X, Z, E, L) → U21(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
REACH_IN(X, Z, E, L) → MEMBER1_IN(.(X, .(Y, [])), E)
MEMBER1_IN(X, .(H, L)) → U71(X, H, L, member1_in(X, L))
MEMBER1_IN(X, .(H, L)) → MEMBER1_IN(X, L)
U21(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U31(X, Z, E, L, Y, member_in(Y, L))
U21(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → MEMBER_IN(Y, L)
MEMBER_IN(X, .(H, L)) → U61(X, H, L, member_in(X, L))
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
U31(X, Z, E, L, Y, member_out(Y, L)) → U41(X, Z, E, L, Y, delete_in(Y, L, V1))
U31(X, Z, E, L, Y, member_out(Y, L)) → DELETE_IN(Y, L, V1)
DELETE_IN(X, .(H, T1), .(H, T2)) → U81(X, H, T1, T2, delete_in(X, T1, T2))
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
U41(X, Z, E, L, Y, delete_out(Y, L, V1)) → U51(X, Z, E, L, reach_in(Y, Z, E, V1))
U41(X, Z, E, L, Y, delete_out(Y, L, V1)) → REACH_IN(Y, Z, E, V1)
REACH_IN(X, Y, E, L) → U11(X, Y, E, L, member_in(.(X, .(Y, [])), E))
REACH_IN(X, Y, E, L) → MEMBER_IN(.(X, .(Y, [])), E)
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REACH_IN(X, Z, E, L) → U21(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
REACH_IN(X, Z, E, L) → MEMBER1_IN(.(X, .(Y, [])), E)
MEMBER1_IN(X, .(H, L)) → U71(X, H, L, member1_in(X, L))
MEMBER1_IN(X, .(H, L)) → MEMBER1_IN(X, L)
U21(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U31(X, Z, E, L, Y, member_in(Y, L))
U21(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → MEMBER_IN(Y, L)
MEMBER_IN(X, .(H, L)) → U61(X, H, L, member_in(X, L))
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
U31(X, Z, E, L, Y, member_out(Y, L)) → U41(X, Z, E, L, Y, delete_in(Y, L, V1))
U31(X, Z, E, L, Y, member_out(Y, L)) → DELETE_IN(Y, L, V1)
DELETE_IN(X, .(H, T1), .(H, T2)) → U81(X, H, T1, T2, delete_in(X, T1, T2))
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
U41(X, Z, E, L, Y, delete_out(Y, L, V1)) → U51(X, Z, E, L, reach_in(Y, Z, E, V1))
U41(X, Z, E, L, Y, delete_out(Y, L, V1)) → REACH_IN(Y, Z, E, V1)
REACH_IN(X, Y, E, L) → U11(X, Y, E, L, member_in(.(X, .(Y, [])), E))
REACH_IN(X, Y, E, L) → MEMBER_IN(.(X, .(Y, [])), E)
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_IN(X, .(H, T1)) → DELETE_IN(X, T1)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MEMBER1_IN(X, .(H, L)) → MEMBER1_IN(X, L)
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MEMBER1_IN(X, .(H, L)) → MEMBER1_IN(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MEMBER1_IN(.(H, L)) → MEMBER1_IN(L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U41(X, Z, E, L, Y, delete_out(Y, L, V1)) → REACH_IN(Y, Z, E, V1)
U31(X, Z, E, L, Y, member_out(Y, L)) → U41(X, Z, E, L, Y, delete_in(Y, L, V1))
REACH_IN(X, Z, E, L) → U21(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
U21(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U31(X, Z, E, L, Y, member_in(Y, L))
reach_in(X, Z, E, L) → U2(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U2(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U3(X, Z, E, L, Y, member_in(Y, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U3(X, Z, E, L, Y, member_out(Y, L)) → U4(X, Z, E, L, Y, delete_in(Y, L, V1))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, E, L, Y, delete_out(Y, L, V1)) → U5(X, Z, E, L, reach_in(Y, Z, E, V1))
reach_in(X, Y, E, L) → U1(X, Y, E, L, member_in(.(X, .(Y, [])), E))
U1(X, Y, E, L, member_out(.(X, .(Y, [])), E)) → reach_out(X, Y, E, L)
U5(X, Z, E, L, reach_out(Y, Z, E, V1)) → reach_out(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U41(X, Z, E, L, Y, delete_out(Y, L, V1)) → REACH_IN(Y, Z, E, V1)
U31(X, Z, E, L, Y, member_out(Y, L)) → U41(X, Z, E, L, Y, delete_in(Y, L, V1))
REACH_IN(X, Z, E, L) → U21(X, Z, E, L, member1_in(.(X, .(Y, [])), E))
U21(X, Z, E, L, member1_out(.(X, .(Y, [])), E)) → U31(X, Z, E, L, Y, member_in(Y, L))
delete_in(X, .(H, T1), .(H, T2)) → U8(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
member1_in(X, .(H, L)) → U7(X, H, L, member1_in(X, L))
member1_in(H, .(H, L)) → member1_out(H, .(H, L))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U8(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U7(X, H, L, member1_out(X, L)) → member1_out(X, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
U41(Z, E, Y, delete_out(V1)) → REACH_IN(Y, Z, E, V1)
U31(Z, E, L, Y, member_out) → U41(Z, E, Y, delete_in(Y, L))
U21(Z, E, L, member1_out(.(X, .(Y, [])))) → U31(Z, E, L, Y, member_in(Y, L))
REACH_IN(X, Z, E, L) → U21(Z, E, L, member1_in(E))
delete_in(X, .(H, T1)) → U8(H, delete_in(X, T1))
delete_in(X, .(X, Y)) → delete_out(Y)
member1_in(.(H, L)) → U7(member1_in(L))
member1_in(.(H, L)) → member1_out(H)
member_in(X, .(H, L)) → U6(member_in(X, L))
member_in(H, .(H, L)) → member_out
U8(H, delete_out(T2)) → delete_out(.(H, T2))
U7(member1_out(X)) → member1_out(X)
U6(member_out) → member_out
delete_in(x0, x1)
member1_in(x0)
member_in(x0, x1)
U8(x0, x1)
U7(x0)
U6(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U41(Z, E, Y, delete_out(V1)) → REACH_IN(Y, Z, E, V1)
Used ordering: Polynomial interpretation [25]:
U31(Z, E, L, Y, member_out) → U41(Z, E, Y, delete_in(Y, L))
U21(Z, E, L, member1_out(.(X, .(Y, [])))) → U31(Z, E, L, Y, member_in(Y, L))
REACH_IN(X, Z, E, L) → U21(Z, E, L, member1_in(E))
POL(.(x1, x2)) = 1 + x2
POL(REACH_IN(x1, x2, x3, x4)) = x4
POL(U21(x1, x2, x3, x4)) = x3
POL(U31(x1, x2, x3, x4, x5)) = x3
POL(U41(x1, x2, x3, x4)) = x4
POL(U6(x1)) = 0
POL(U7(x1)) = 0
POL(U8(x1, x2)) = 1 + x2
POL([]) = 0
POL(delete_in(x1, x2)) = x2
POL(delete_out(x1)) = 1 + x1
POL(member1_in(x1)) = 0
POL(member1_out(x1)) = 0
POL(member_in(x1, x2)) = 0
POL(member_out) = 0
delete_in(X, .(X, Y)) → delete_out(Y)
delete_in(X, .(H, T1)) → U8(H, delete_in(X, T1))
U8(H, delete_out(T2)) → delete_out(.(H, T2))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
U31(Z, E, L, Y, member_out) → U41(Z, E, Y, delete_in(Y, L))
U21(Z, E, L, member1_out(.(X, .(Y, [])))) → U31(Z, E, L, Y, member_in(Y, L))
REACH_IN(X, Z, E, L) → U21(Z, E, L, member1_in(E))
delete_in(X, .(H, T1)) → U8(H, delete_in(X, T1))
delete_in(X, .(X, Y)) → delete_out(Y)
member1_in(.(H, L)) → U7(member1_in(L))
member1_in(.(H, L)) → member1_out(H)
member_in(X, .(H, L)) → U6(member_in(X, L))
member_in(H, .(H, L)) → member_out
U8(H, delete_out(T2)) → delete_out(.(H, T2))
U7(member1_out(X)) → member1_out(X)
U6(member_out) → member_out
delete_in(x0, x1)
member1_in(x0)
member_in(x0, x1)
U8(x0, x1)
U7(x0)
U6(x0)